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1. INTRODUCTION

Multi-echelon inventory theory has been of interest over the last

two decades, both for the theoretical problems it poses and for its

realism in describing operating systems. After a relatively dormant

period in the late 1960's and early 1970's, a resurgence of interest

occurred. Most of the recent work in multi-echelon systems is keyed to

a model called METRIC that was developed at the Rand Corporation for the

U.S. Air Force. This model involves finding optimal spares levels at

various locations in a two-echelon system, where lateral bases are sup-

ported by a single depot. More detail is provided in the sections that

follow.

Of interest here is the study of the trade-off possible among

spares levels and repair capacities, as well as a more realistic model
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than is presently available of the underlying stochastic process that

'describes components which randomly fail and require repair.

The general problem to be investigated is the determination of

the optimal spares levels and repair capacities in a reparable item

multi-echelon system in which a finite number of items is desired to be

operational at any given time, and in which queueing may occur at the

repair facilities when all channels--finite in number--are busy.

Before presenting the details of the model developed here, we

first trace the historical development of inventory theory, with partic-

ular emphasis on multi-echelon efforts, and summarize the previous work

in repairable item, multi-echelon inventory control.

2. HISTORICAL PERSPECTIVE

Tnventory theory is said to have begun with the development by

Ford Harris in 1915 of the Economic Order Quantity (EOQ) model [see

HARRIS (1915)]. The same model was independently developed by R. H.

Wilson at about the same time, and the model is sometimes referred to as

the Wilson Lot Size Formula. This simple deterministic model still

serves today as one of the cornerstones of applied inventory control.

In the 1950's and 1960's, interest in stochastic inventory con-

trol grew after the publication of the landmark paper by ARROW, HARRIS,

and MARSCHAK (1951). A great deal of more "sophisticated" mathematical

work then appeared, concerned mainly with proving that (s,S) types of

control policies are optimal under a wide range of conditions [see, for

example, ARROW, KARLIN, and SCARF (1958)]. Most of this work had to do

with periodic review policies, that is, policies with the decision rule:

"When it is time to review inventory, if the inventory position (on hand

-2-
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plus on order minus backorders) is below s , place an order to bring

the inventory position level up to S ." Only a few of the studies dur-

ing that time were concerned with how actually to find optimal values of

the three decision variables "s," "S," and "time between reviews."

In 1959, GALLIHER, MORSE, and SIMOND considered continuous review

(s,S) policies, whose decision rule is: "Continuously monitor the inven-

tory position. When it falls to a level s , place an order Q which

will bring the inventory position level to S (Q - S-s) ." These are

also known as (r,Q) models [see HADLEY and WHITIN (1963)].

While there was interest in multi-echelon inventory models during

the late 1950's and early 1960's [see, for example, CLARK (1958, 1960)

and CLARK and SCARF (1960, 1962)], it was not until the 1970's that

computers were able to handle the difficult task of solving problems of

this magnitude. PINKUS (1971) extended the work of Clark and Scarf and

designed a truly multi-echelon, multi-product periodic review model for

consumable items, and showed that "real" solutions could be obtained.

The classic paper by FEENEY and SHERBROOKE (1966) appeared during

tis same period, and ultimately became the basis of the most popular

multi-echelon reparable item model of today [see SHERBROOKE (1968)].

For reparable item control, a realistic model is a special case of the

continuous review (s,S) policy, where s - S-1 . This is also known as

a one-for-one ordering policy, and is sometimes used in consumable item

inventory control for items that are expensive, critically important,

and infrequently demanded. It is a natural model for reparable item

situations in that when an item fails, it is generally dispatched

immediately to a repair facility and a spare, if available, is "plugged

-3-
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in." Repairing the item is analogous to ordering a new consumable item

from an outside supplier with the repair time playing the same role as

the replenishment leadtime.

The METRIC model of Sherbrooke "multi-echelonized" the basic

(S-1,S) model of Feeney and Sherbrooke by allowing a certain fraction of

the items to be repaired at the base and the remainder to be sent to a

repair depot. The decision variables were the levels of spares (the

S's) to be stocked in the field, i.e., at each of the bases, and at the

depot. MUCKSTADT (1973) generalized METRIC to allow for a hieratchical,

or indentured, parts structure; the resulting model was called MODMETRIC.

A key assumption of these METRIC models is commonly known as the

ample service assumption. This means that repair capacity is infinite,

i.e., that there is never any queueing of items waiting for a repair

channel. This has the effect of causing successive replenishment lead-

times to be statistically independent and allows the invocation of a pow-

erful theorem from queueing theory--Palm's theorem [see PALM (1938)].

Palm's theorem states that as long as there is ample service (Poisson or

compound Poisson infinite calling population failure processes must be

assumed as well), it is necessary to know only the mean turn-around time

of failed items, and furthermore, that the steady-state probability dis-

tribution of the number of units in resupply is Poisson, with parameter

equal to the mean number of failures during an average resupply time--in

inventory jargon, the mean demand over the leadtime.

Other existing multi-echelon repairable item models based'on this

ample service assumption are ACCLOGTROM [see FORRY (1979)], SIMPLE SIMON

-4-
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[see KRUSE and KAPLAN (1973)], and TWOPT [see KAPLAN (1980)]. These

models differ from each other in their respective "bells and whistles."

For example, SIMPLE SIMON allows some old items to be discarded and re-

placed by purchases. ACCLOGTROM allows for the modeling of reliability

networks; that is, components may be arranged in combinations of paral-

lel, series, and k-out-of-n "circuits." Some of the models [METRIC,

MODME'RIC, SESAME (see Kaplan, op. cit.), ACCLOGTROM) also consider

finding optimal values of the decision variables, and their mathematical

optimization techniques are somewhat dissimilar.

3. SUMMARY OF PREVIOUS WORK

The previous models that have the most direct bearing on our

research are the ACCLOGTROM, METRIC/MODMETRIC, SESAME, SIMPLE SIMON, and

TWOPT models. SIMPLE SIMON and TWOPT are stochastic process models

only; that is, they give the steady state probabilities of the numbers

of units in resupply. METRIC/MODMETRIC and ACCLOGTROM, in addition to

modcling the stochastic process, have methodology for finding the opti-

mal spares levels. SESAME basically concentrates on finding optimal

spares levels and can use METRIC, TWOPT, ACCLOGTROM, or SIMPLE SIMON for

modeling the stochastic process. There are three basic limitations to

the preceding models:

" The stochastic process modeling is based on

(i) infinite source (calling population), and

(ii) ample service (infinite number of repair channels)

assumptions.

" Because of the ample service assumption, the only decision

variables in these models are spares levels, and thus no

-5-
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trade-off considerations are possible among levels of spares

and repair capacities.

Recent work by GRAVES and KEILSON ( 197)) ciotsiders a single 4,4 'lilol sVs-

tern allowing for a general birth-death stochastic process model, and in-

troduces a new set of performance measures dealing with times for the

system to recover after "failing" and times to "failure" when operating

satisfactorily. While alluding to system design ramifications, no ex-

plicit optimization problem is formulated.

4. PROBLEM STATEMENT

The system we study here consists of a single base (or group of

bases) with a single base (or field) repair facility and a single depot

repair facility. The problem can be stated mathematically as

Minimize Z = kyy + kc B + kDcD
y cB- cD

M+y
subject to M Pn A, (2)

where

Pn = steady-state probability that n units are operational,

M = number of components desired to be operating (operating

population size),

A = minimum percentage of time all M components are to be

operational (availability),

y = number of spare components to "stock",

c8 = base repair capacity fn number of c:hannels,

c = depot repair capacity in number of channels.

kt a cost per unit (i-y,D,B) including annual operating costs and

capi al investment amortization of a spare or a repair channel.

I -6-
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The variables y, cB, and cD are decision variables to be deter-

mined by an optimization algorithm. The steady-state probabilities. Pn

must be determined through a stochastic process analysis. We use closed

network queucing theory for the latter and implicit enumeration for the

former.

5. STOCHASTIC PROCESS MODEL

The stochastic process can be viewed as a network and is shown

schematically in Figure 1.

Node U Node B
M Operating BaeRpi

U cB Channels 1-a

y spares B

Node D

Depot Repair
c C)D Channels

PD

Figure l.--Network for a two-echelon repairable
item system.

The network has three nodes, which we refer to as U ("up" or

operating), B (base repair facility), and D (depot repair facility).

Additional parameters a and a are shown, where a is the fraction

of failed items that are diagnosed as base repairable and sent directly

to base repair (1-a is the fraction sent directly to depot repair). Of

I[ - 7-
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those that are sent to base repair, a further fraction 3 , after under-

going service, cannot be fixed and are sent to depot repair.

Holding times at all nodes are assumed to he independent exponolW-

tially distributed random variables. At node 11, the holding time is the

tn, Lo 1';tilurv of a component, with the mean failure rate denot-ed by

1iU (often in queueing and reliability literature, this Is denoted by

A ). At nodes B and D, the holding times are repair times and the mean

repair rates are denoted by PB and PD , respectively.

Since all holding times are exponential, we have a special case

of a Jacksonian network [see JACKSON (1957, 1963)]; this special case is

a closed queueing network where no items ever leave or enter the system,

but circulate within the network only. Jackson (op. cit.) showed for

general queueing networks with exponential holding times (which, because

of his work, are often referred to as Jacksonian networks), and CORDON

and NEWELL, (1967) showed for the closed network case that ihe joint

probability distribution of the number of customers at each node of the

network is of product form. For closed networks, using the notation of

BUZEN (1973), this means that for a k node network with a total of N

un its,

p(nln 2 9 ... nk) G k(N) : xi )  / Ai(ni] (3)

where p(nl,n 2 ... ,nk) is the Joint steady state probability that n

components are at node I, n2 at node 2, ..., nk at node k . The

xi are the real positive solutions to the system of equations

k

i X = J Pi xXPl , J=l,2 ... ,k , (4)
i-l

-8-
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and

n! V n < ci

Ai(n) - n-c1  (5)
cic , n > ci

ci - number of parallel channels at node i,

Pij = Pr{unit goes to node j I service completed at node i}

The x in equation (3) play the role of /W in a standard M/M/c

model, and thus the nodes act as independent M/M/c queues with 1/G(N)

the normalizing constant (taking the place of the pO's ).

For our system, there are only three nodes (i = U,B,D) and

cU = M , the desired number of components operating. The queue at this

node represents the level of spares inventory. When servers at node U

are idle, a spares backorder situation is in effect and the population

is at a degraded strength (fewer than M components operating).

The matrix giving the pij's for our problem is

U B D

= U (0 a 1-aiP - {p ij) B 1- 0 a

D (1 0 0

Using these pij 's in equation (4) yields

PU'U= BxB(l-8 ) + IDXD

PBXB w PuXuo (6)

IjD'D - PU'Xu(1-a) + WBXB 8 •

The solution to the system of equations (6) is, arbitrarily set-

ting xB = 1 since one equation of the set (4) is always redundant,

-9-
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B- xs B
U U t B X D D

Thus,

I I B I 1 _____ P_ Fn 1

p____n) __ ___ 7_'
P (nurB'D) U(N)aP u AU(nU) AB(nB) l D AD ( n D )

where the A's are given by equation (5), namely,

n! ,n < b
A(n) [= -A n!bn-b 

, n > b

where b = M, cB, and cD , respectively. Buzen's algorithm is used to

calculate the constant G(N); that is, the value of G(N) so that

I P(nuonBnD) 1
S

the sum being taken over the set S , which contains all triplets

(nu,nB,n1) such that nU + nB+ n Di N . Once the joint probabilities

P(nuynBon D )  are obtained, we can calculate the marginal probabilities

pn , which are required for the constraint(s), by

Pnu S1 YP(nun B n D) I

S

where S now is the set of all pairs (nBnD) such that nB + nD

N-nU . his can be done efficiently using Buzen's algorithm; in fact, it

results as a by-product when calculating G(N) .

The above probability distribution is a function of the decision

variables y, cB, and cD . The distribution exhibits certain monotonic-

ity properties in relation to these variables; this will play a crucial

role in the optimization part of this study. Thus, before considering

optimization, we verify monotonicity.

- 10 -
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Let N represent the number of "up" machines for a steady-state

network; the distribution of N depends on (y,cB,CD) and thus wv rep-

resent the random variable as Nu(ycB,CD) We put the usual partial

order on the decision space: (y,cB,cD) < (y',c;,c;) if and only if

y < y' , c < c; , and c < c' . Now consider the idea of stochastic
B-B D 4 D

st,ordering of random variables: N < N if and only if P(N>n) < P(N'>n)

for all n . We can now state the basic monotonicity property for the

steady-state behavior of the system.

Theorem. If (ycB,cD) < (y',c ,c ) , then N(YcB,cD) Nu(Y',cC)

The transitivity of the inequalities implies that only three cases

must be considered in proving this theorem: (i) (y,cBc) < (y+l,cB,cD)

(ii) (y,cB,cD) < (Y,CB+l,cD) ; and (iii) (y,cB,cD) - (YCB,cD+1) .

First consider case (i): We must show that the steady-state num-

ber of "up" units increases stochastically when the total number of units

is increased by one and the number of repair channels is unchanged. This

is easily seen to be true by modelling the system with M+y+l units as

a preemptive priority network with M+y high priority customers and 1 low

priority customer. The distribution of the total number of customers at

each node will be identical to the nonpriority system with M+y+l cus-

tomers. The distribution of the number of high priority customers at

each node will be identical to the nonpriority system with M+y customers.

The one low priority customer will spend part of its time at node "U";

thus, Nu(Y+I,cBCD) 't Nu(Y,CBC D) + Lu ,where L equals the number

of low priority customers at node "U" in steady state. Since L > 0

it follows that Nu(y+l,cBCD) Nu(Y,CBcD)

- 11 -
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Now consider case (ii): We must show that the steady-state number

of "up" units increases stochastically when the number of base repair

channels is increased by one and all other parameters are held fixed.

This can be demonstrated by considering the form of the joint distribu-

tion of the number of items at each node, equation (3). Note that this

is the conditional distribution of three independent random variables

given that their sum equals the total number of items in the system. Let

us denote these independent random variables as Zu(M) , ZB(CB) and

Z D(cD) Then, for example,

nxl
B n < cB

P(ZB(cB) = n) n x (7)

POB n-c CBf y
CBc B

where pOB is the appropriate normalization constant. By the product

form, equation (3), it follows that

Nu(YccD) t Zu(M) I Zu(M) + ZB(CB) + ZD(cD) =My . (8)

It can be shown by a straightforward algebraic analysis using equation

(7) (see Appendix) that

ZB(cB + 1) a? ZB(cB)

This fact and equation (8) then imply that

Nu(y,cB+1,cD) Nu(y,ch,cD)

the desired conclusion.

Case (iii) can be verified in exactly the same way as case (ii),

completing the proof. The statement of the theorem gives the desired

- 12 -
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monotonicity property of the constraint function in equation (2). We can

now proceed to the optimization.

6. OPTIMIZATION PROCEDURE

The optimization aspect of this study is a formidable one because

an expression for the availability as a function of the decision vari-

ables (the spares level and repair capacities) does not exist in closed

algebraic form. That Is, the pn's that appear In the constraint (2)

are deLermined from the stochastic process model and can only be (alcu-

lated numerically when the values of y, cB, and cD are specified.

The difficulty just indicated, and the fact that integer values

are required for the decision variables, suggest the use of an implicit

enumeration scheme for the optimization algorithm. One such scheme that

has already been used when closed algebraic expressions were not avail-

able [see SOLAND (1973)] is that of LAWLER and BELL (1966). However, it

requires that the objective and constraint functions each be expressible

as the difference of two monotonic functions of the decision variables.

Thus, use of this optinization scheme interacts with the stochastic pro-

cess analysis in that the latter is charged with providing the required

monotonicity properties of the model. We have shown in the stochastic

process analysis that the monotonicity conditions hold (the higher

y, CB, cD , the greater the availability). The cost is linear and there-

fore monotone. Thus we can use the Lawler-Bell (L-B) algorithm. Use of

any other optimization algorithm would most likely place similar, or even

more stringent, demands (e.g., convexity) on the stochastic process

analysis.

- 13 -
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An implicit enumeration approach also allows us to consider a

much wider class of decision problems than has heretofore been treated

in connection with multi-echelon inventory models. The optimization al-

gorithms use.. in METRIC, MODMETRIC, and SESAME are each tailored to the

specific form of the problem treated, i.e., a single specific constraint,

either on service level or on budget, and are not easily generalized to

other formulations. Through use of an implicit enumeration approach,

hoverer, we can treat a variety of objective and constraint functions

and allow the use of multiple constraints. For example, we can impose

the additional constraint of a lower limit on the average number of op-

erating units:

M-1 M+y
I n.p +M I p > B,

or a constraint on the availability of a certain fraction of the popula-

tion:

I p > A'
nU.9 M P U

In applying the algorithm it is necessary to have upper bounds

for the decision variables. Certainly an upper bound for both c B and

cD is M+y (ample server case). To get an upper bound for y would

require some knowledge of the particular application, for example, a

budget limit or a manufacturing or supply limit.

The algorithm is based on representing the values of the decision

varlables in a single binary vector (a vector whose elements are either

zero or one). Suppose we had a population of ten items and knew from

budget considerations we couid afford at most five spares. Then an upper

- 14 -
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bound of fifteen would be adequate and four bits (binary variables) would

be adequate for describing each variable. Thus the L-B algorithm would

work with a twelve bit vector, which might be arranged as follows:

i I
I I

y c B c D

Hence in this case the vector (0010 : 0010 1 0011) , which has value

29 + 25 + 21 + 20 = 547 , represents the solution y 2, cB = 2,

cD = 3 . The algorithm uses the binary vector whose value is 547 in

determining which portions of the solution space to eliminate. For

example, in the problem represented by (1) and (2), if the preceding

vector cannot satisfy the constraints, no vector with value less than it

can either, and hence all solutions represented by vectors of value less

than 547 are eliminated from consideration.

It is not necessary to partition the vector into groups repre-

senting each decision variable; y, CB, and cD bits can be intermixed.

For example, we could use the ordering

(Y4' CB41 cD4 Y3 ' cB3 CD3 Y2 ' cB2 ' CD2' Yl, CBl, cDl)

where yi, CBi' and cDi represent the ith bit of y, cB, and cD

respectively. If this ordering were used, the vector with value 547

shown above would represent the solution y - 0010 = 2 , cB = 0001 = 1,

cD - 1001 - 9 . Which ordering is most efficient to use depends on the

problem and can only be determined with some experimentation. The

reader is referred to Lawler and Bell (op. cit.) for a detailed descrip-

tion of the algorithm and further discussion.

- 15-
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7. SAMPLE RESULTS

The following problem was run on an IBM 4341 using Buzen's algo-

rithm to calculate the normalizing constant needed to yield the joint

probabilities p(nU,nB,nD) , and using the L-B algorithm to find the

optimal solution:

Minimize Z = 20y + 8cB + lOcD

subject to I> .9 (A1 )
nu=M nU

M7pM n > .98 (A2)
nu=.9 M nU

The parameters were set as follows:

x = 0.5, -= 0.5, U = 1, 11B = 1D 5

The upper bound used on all variables was 2M and cases with M = 5,

10, 20, and 30 were solved. Both constraints were used, except for the

case of M = 30 , where only (AI) was imposed. The results are given in

Table 1. Four diiferent orderings were used and the results for the best

two are shown in Table 1, with ordering #1 being (..., yi cBi' CDi'

Yi-l' CBi-l' cDi-l ...) and ordering #2 being ( Y y i-l' "'''

CBi , cBi-l, ..., c Di, cDi-l, ...) Given in the table are both the CPU

running times in seconds and the number of times Buzen's algorithm was

required (number of times the probabilities had to be calculated).

Both the L-B and Buzen algorithms appear to be quite efficient.

The most demanding of the problems run was the case M = 30 , both be-

cause it has the largest population size and because it imposes only one

constraint, causing the L-B algorithm to enumerate more solutions than

-16 -
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if both constraints had been invoked. Even so, the problem took only

slightly over ten seconds to solve.

TABLE 1

SAMPLE RESULTS

M c c* A Ordering 1 Ordering 2
B y A1  2 CPU # CPU #

5 2 2 3 96 .938 .982 1.45 41 0.83 25

10 3 3 5 154 .926 .988 2.97 64 l15 38

20 4 ? . 252 .907 .989 -- -- 2.55 66

30 6 8 11 348 .904 ... .-- 13.11 137
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APPENDIX

PROOF THAT Z B (C B + 1) Z Z1(lB)

Even though it is intuitively obvious that if one Increases the

number of servers, congestion decreases, so that it is certainly logical

that ZB(cB + 1) is stochastically smaller than ZB(CB ) , it is not

trivial to prove. We proceed as follows, using Equation (7).

Consider the ratio P{ZB(cB) = n} / P{ZB(CB) = n - 1} , which we

shall call R(c Bn) From Equation (7),

BB
n <n c

R(cBn) = (Al)
Ix B CB< n <.M + y

IcB B

It is clear that

R(cB,n) > R(cB + 1, n) n = 1,2 .... ,M+y . (A2)

This also implies that

P{ZB(CB) -i < PZB(CB  + 1) = iW
p(BcB) ' <pB(B o < i< J< Msy (A3)

P{Z C ) i = P Z Bc + 1) jJ ..

since Hi. R(cBn) > HL R(c + 1, n) and hence
n =i+]  = n=i+1 B

nI/ J R(cBn) < J / i R(cB + 1, n)
nn+ - ni+ B l

From (A3) we can easily obtain

i P{ZB(cB) = i} P{ZB(cB + 1) = i}

i=O i-O
PZB (c B) 1 i P{ZB(CB + 1) = ii

which implies, when taking reciprocals,

P{ZB(cB) Z B(CB < J > P{Z B (C B + 1) - j I ZB(C B + 1) < J}

which in turn implies, by subtracting both sides from one,

- -
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P{Zs(c) <-i z(c B) -. 1  PiZB(cg+1) , i-i I :1Sh,'+i) *'.

I < j < M+y

Now

PiZB(c) < J -l} PiZB(cB) i-i I ZB(c) S M+y(

= My P{ZB(B) < i*-iI ZB(CB) < i)

i=j ---iM BBy
< 1 P B(cel) < i-I ZB(CB+l) <i

ifj

- PfZB(cB+l) < j-1)

Hence,

P{Zs(c) > J} > B(c+I) j} Q.E.D.

Ordering the ratios as in (A2) actually is a sufficient condition

in general for stochastic ordering [see WHITT (1980)].

- 19 -



T-446

REFERENCES

[i] ARROW, K. J., T. HARRIS, and J. '1ARSCHAK (1051). Optimal inven-

tory policy. Economotrica, 19, 250-272.

[2] ARROW, K. J., S. KARLIN, and S. SCARF (1958). Studies in the

Mathematical Theory of Inventory and Production. Stanford

University Press, Stanford, CA.

[3] BUZEN, J. P. (1973). Computational algorithms for closed queueing

networks with exponential servers. Comm. of the ACM, .5,

527-531.

[4) CLARK, A. J. (1958). A dynamic, single-item, multi-echelon inven-

tory model. RM2297, The Rand Corporation, Santa Monica, CA.

[5] CLARK, A. J. (1960). The use of simulation to evaluate a multi-

echelon, dynamic inventory model. Naval Res. Logist. Quart.,

7, 429-445.

[61 CLARK, A. J. and H. SCARF (1960). Optimal policies for a multi-

echelon inventory problem. Management Sci., 6, 475-490.

[7] CLARK, A. J. and H. SCARF (1962). Approximate solutions to a

simple multi-echelon inventory problem. Chapter 5 in Studies

in Applied Probability and Management Science (K. J. Arrow,

S. Karlin, and H. Scarf, eds.). Stanford University Press,

Stanford, CA.

[81 FEENEY, G. J. and C. C. SHERBROOKE (1966). The (S-l,S) inventory

policy under compound Poisson demand. Management Sci., 12,

391-411.

[9] FORRY, K. E. (1979). An analytical model for optimum site stock-

age. Spectrum, Ann. Soc. Logist. Engineers, 4, 52-58.

- 20 -



T.-446

[10] GALLIhER, H. P., P. . MORSE, and !. SIMOND (19591). Dyinamics of

two classes of continuous-review inventor\ systeus. Operi-

tions Res., 7, 362-384.

111] GORDON, W. J. and G. F. NEWELL (1967). Closed queueing systems

with exponential servers. Operations Res., 15, 254-265.

[12] HADLEY, G. and T. M. WHITIN (1963). Analysis of Inventory Systems.

Prentice Hall, Englewood Cliffs, NJ.

[13] HARRIS, F. (1915). Operations and Cost. Factory Management

Series, A. 1. Shaw Co., Chicago, IL.

[14] JACKSON, J. R. (1957). Networks of waiting lines. Operations

Res., 5, 518-521.

[15] JACKSON, J. R. (1963). Jobshop-like queueing systems. llanagement

Sci., 10, 131-142.

1161 KAPLAN, A. J. (1980). Mathematics for SESMIE model. Technical

Report TR80-2, U.S. Army Inventory Research Office, Philadel-

phia, PA.

[171 KRUSE, 14. K. and A. J. KAPLAN (1973). On a paper by Simon. Op-

erations Res., 21, 1318-1322.

1181 LAWLER, E. L. and I. 9. BELL (1966). A method for solving discrete

optimization problems. Operations Res., 14, 1098-1112.

[191 MUCKSTADT, J. A. (1973). A model for a multi-item, multi-echelon,

multi-indenture inventory system. Zfanagement Sci., 20, 472-

481.

[2C7 PALM, C. (1938). Analysis of the Erlang traffic formulae for

busy-signal arrangements. Ericsson Tech., 6, 39-58.

- 21 -



T-446

1211 PINKUS, C. E. (1971). The design of multi-product, multi-echelon

inventory systems using a branch and bound algorithm. Techni-

cal Paper Serial T-250, Program in Logistics, The George Wash-

ington University.

[22] SHERBROOKE, C. C. (1968). METRIC: A multi-echelon technique for

recoverable item control. Operations Res., 16, 122-141.

[23] SOLAND, R. M. (1973). Optimal defensive missile allocation: A

discrete min-max problem. Operations Res., 21, 590-596.

[24] WHITT, W. (1980). Uniform conditional stochastic order. J. AppZ.

Prob. 17, 112-123.

- 22 -



THE GEORGE WASHINGTON UNIVERSITY

Program in Logistics

Distribution List for Technical Papers

The George Washington University Armed Forces Industrial College Case Western Reserve UniversityOffice of Sponsored Research 
Prof B. V. DeanGelman Library Armed Forces Staff College 'rof M. Mesarovi(

Vice rresident H. F. Bright
Dean Harold Liebowitz Army War College Library Cornell UniversityDean Henry Solomon Carlisle Barracks Prof R. V. Bechhofer

Prol R. W. ConwayONR Army Cmd & Gen Staff College 'rf Andrew SIultz, Jr.Chief of Naval Research
(Codes 200, 434) Army Logistics Mgt Center Cowles Foundation for ResearchResident Representative Fort Lee in Focomonics

OPAV Commanding Officer, USALDSRA Prof Martin ShubikOP-40 
New Cumberland Army Depot FoiaSaeUiest

DCNO, Logistics 
Florida State UniversityNavy Dept Library Army Inventory Res Ofc Prof R. A. BradleyNAVDATA Automation Cmd Philadelphia Harvard University

Prof W. G. CochranNaval Aviation Integrated Log Support Army Trans Material Cmd Prof Arthur Schleifer, Jr.NARDAC Tech LibraryTCMAC-ASDT
NARDC Teh LiraryPrinceton 

UniversityAir Force Headquarters Prof A. W. TuckerNaval Electronics Lab Library AFADS-3 Prof J. W. Tukey
L E X Y P r o f G f S . Wuk e yNaval Facilities Eng Cmd Tech Library SAF/ALG Prof Geoffrey S. Watson

Purdue University
Naval Ordnance Station Griffiss Air Force Base Prof S. S. rupta

Louisville, Ky. Reliability Analysis Center Prof H. RubinGunter Air Force Base 
Prof Andrew WhinstonNaval Ordnance Sys Cmd Library AFLMC/XR Stanfora University

'rof I. UI. ersonNaval Research Branch Office Maxwell Air Force Base Library rof Kenn.. i row
Boston rof G. B. Da row
Chicago Wright-Patterson Air Force Base Prof C. B. DantzigNew York AFLC/OA Prof F. S. HillierPasadena Research Sch Log Prof D. L. IglehartSan Francisco AFALD/XR Prof Samuel Karlin

Prof G. J. LiebermanNaval Ship Eng Center Defense lechnical Info Lenter Prof Herbert Solomon
Philadelphia, Pa. 

Prof A. F. Veinott, Jr.
National Academy of SciencesNaval Ship Res & Dev Center Maritime Transportation Res Bd Lib University of California, Berkeley

Prof R. E. BarlowNaval Sea Systems Command National Bureau of Standards Prof D. GalePHS 30611 Dr B. H. Colvin Prof Jack KieferTech Library Dr Joan Rosenblatt
Code 073 

University of California, Los AngelesNational Science Foundation Prof R. R. O'NeillNaval Supply Systems Command
Library National Security Agency Pr of LSthOperations and Inventory Analysis Prof W. L. Smith

Weapons Systems Evaluation Group Prof M. R. Leadbetter
Naval War College Library

Newport British Navy Staff University of PennsylvaniaProf Russell Ackolf
BUPERS Tech Library National Defense Hdqtrs, OttawaFMOLogistics, OR Analysis Estab University of Texas

Institute for Computing ScienceAmerican Power Jet Co 
and Computer Applications

USN Ammo Depot Earle George Chernowitz
Yale UniversityUSN Postgrad School Monterey General Dynamics, Pomona Prof F ,1. AnscombeLibrary 

Prof l. Scarf
Dr Jack R. Borsting General Research Corp P 7. W. irnbamP r o f C . R . J o n e s L ib r a r y Ursf o Wa s g

University of WashingtonUS Coast Guard Academy Logistics Management Institute Prof B. H. BissingerCapt Jimmie D. Woods Or Murray A. Celsler e Pennsylvania State University
US Marine Corps Rand Corporation Prof Seth BonderCommandant 

Library 
Unve t y o ferDeputy Chief of Staff, R&D Mr William P. Hutzler University of Michigan

Marine Corps School Quantico Carnegie-Mellon University Prof G. E. BoxLanding Force Dev Ctr Dean II. A. Simon University of WisconsinLogistics Officer Prof . Thompson Dr Jerome Bracken

Institute for Defense Analyses

Continued



Prof A. Charnes Prof W. Kruskal Prof A. H. Rubenstein
University of Texas University of Chicago Northwestern University

Prof H. Chernoff Mr S. Kumar Prof Thomas L. Saaty
Mass Institute of Technology University of Madras University of Pittsburgh

Prof Arthur Cohen Prof C. E. Lemke Dr M. E. Salveson
Rutgers - The State University Rensselaer Polytech Institute West Los Angeles

Mr Wallace H. Cohen Prof Loynes Prof Gary Scudder
US General Accounting Office University of Sheffield, England University of Minnesota

Prof C. Derman Prof Tom Maul Prof Edward A. Silver
Columbia University Kowloon, Hong Kong University of Waterloo, Canada

Prof Masao Fukushima Prof Steven Nahmias Prof Rosedith Sitgreaves
Kyoto University University of Santa Clara Washington. DC

Prof Saul 1. Gass Prof D. B. Owen LTC G. L. Slyman, MSC
University of Maryland Southern Methodist University Department of the Army

Dr Donald P. Gaver Prof P. R. Parathasarathy Prof M. J. Sobel
Carmel, California Indian Institute of Technology Georgia Inst of Technology

Prof Amrit L. Goel Prof E. Parzen Prof R. H. Thrall
Syracuse University Texas A & M University Rice University

Prof J. F. Hannan Prof H. 0. Posten Dr S. VajdaMichigan State University University of Connecticut University of Sussex. England

Prof H. 0. Hartley Prof R. Remage, Jr. Prof T. H. iWhitin
Texas A & H Foundation University of Delaware Wesleyan University

Prof W. H. Hirsch Prof Hans Riedwyl Prof Jacob Wolfowitz
Courant Institute Unive tty of Berne University of South Florida

Dr Alan J. Hoffman Mr David Rosenblatt Prof Max A. Woodbury
18, Yorktown Heights Washington, D. C. Duke University

Prof John R. Isbell Prof M. Rosenblatt Prof S. Zacks
SUNY, Amherst University of California, San Diego SUNY, Binghamton

Dr J. L. Jain Prof Alan J. Rowe Dr Israel Zang
University of Delhi University of Southern California Tel-Aviv University

Prof J. H. K. Kao
Polytech Institute of New York

February 1981



THEGf()ZG - WSll4 -l) UNIVERI4~IS1

I N I li , ,A lf

4,

To cope with the expanding technology, our society must

he assured of a continuing supply of rigorously trained
and educated engineers. The School of Engineering and
Applied Science is completely committed to this ob-
jective.



IAT

~I


